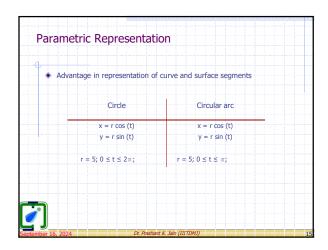
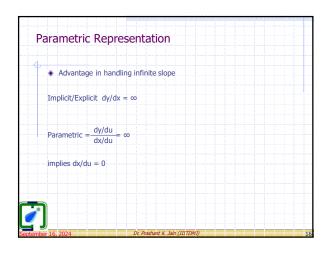
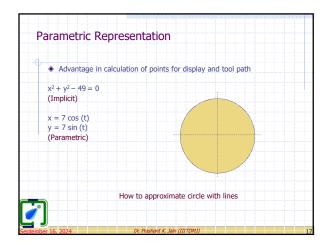


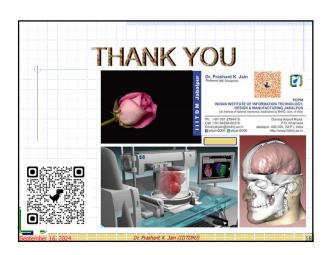
P	arametric Representation
	 Offers more degree of freedom for controlling the shape of curves and surfaces
	Explicit form
	$y = px^2 + qx^2 + rx + s$
	Parametric form
	$x = au^3 + bu^2 + cu + d$
	$y = eu^3 + fu^2 + gu + h$
· ·	
4 .	U

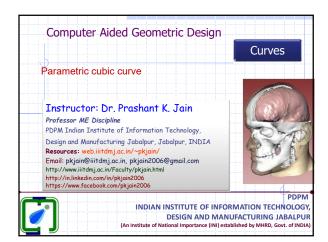
Transformations are easier to	apply
Circle with center (0,0) and radius 7 units	Circle with center (4,3) and radius 7 units
x = 7 cos (t)	$x = 4 + 7 \cos(t)$
y = 7 sin (t)	$y = 3 + 7 \sin(t)$
$x^2 + y^2 - 49 = 0$	$x^2 + y^2 - 8x - 6y - 24 = 0$

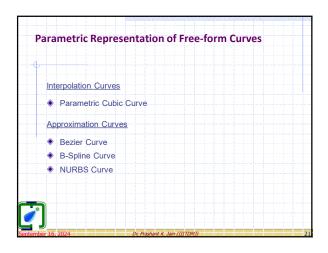


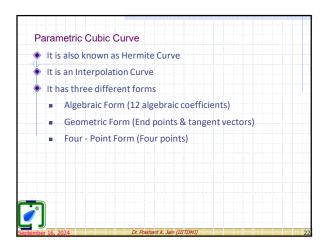


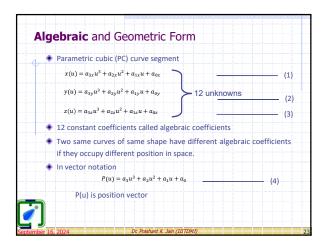


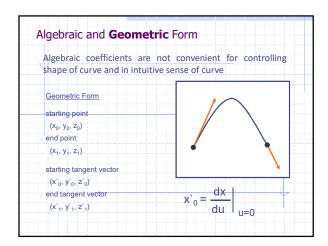


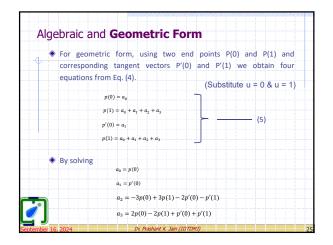


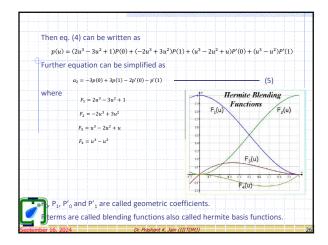


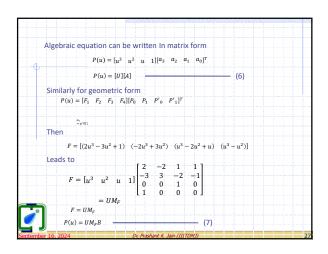


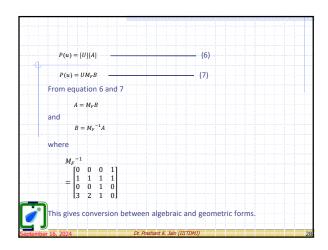


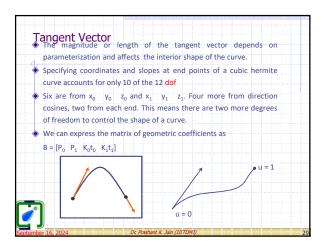


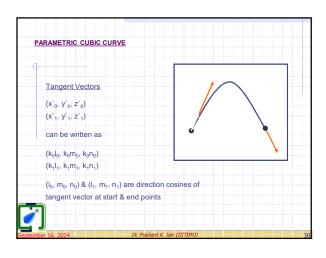


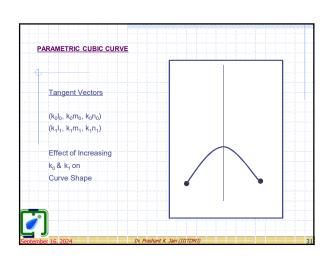




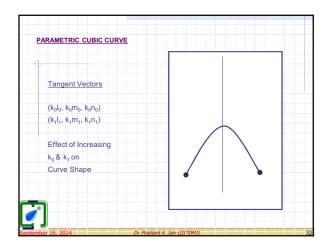


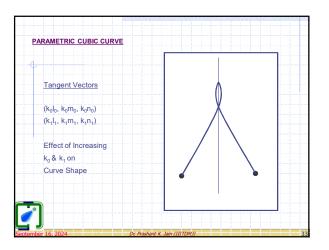


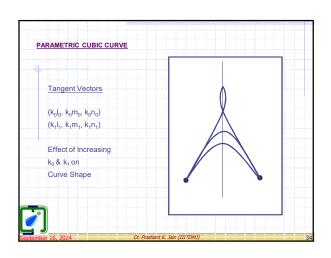


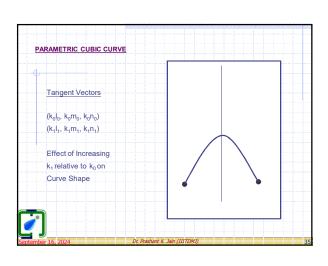


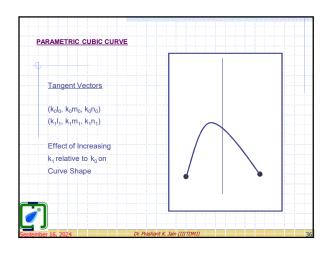
Dr. Prashant K. Jain September 16, 2024

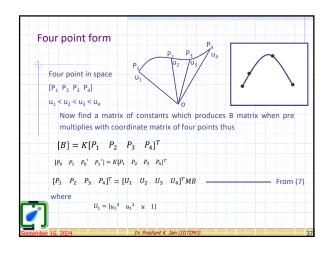


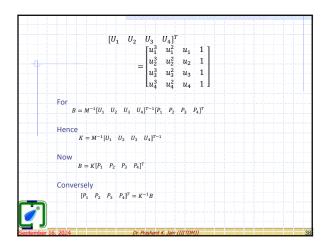


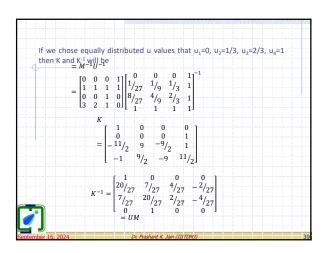


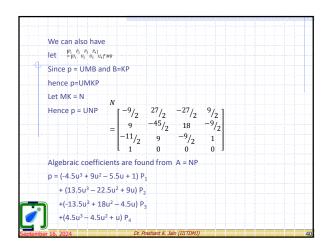


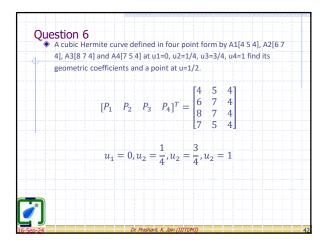


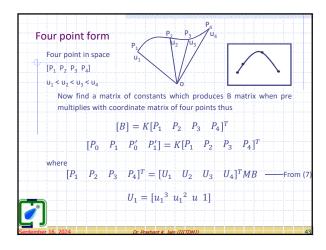


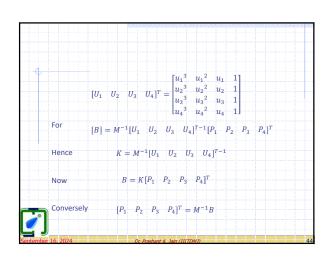


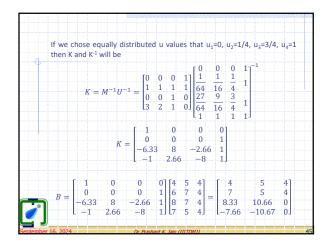


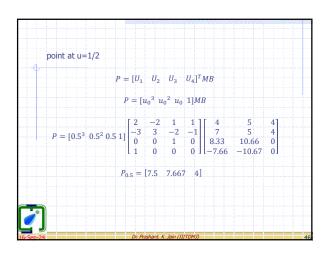




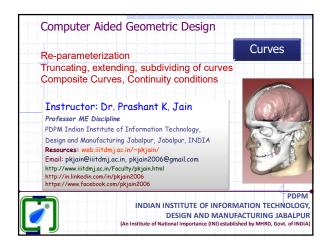


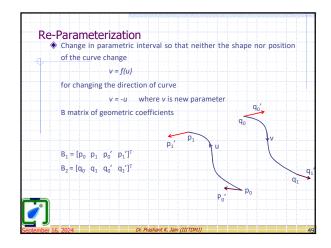


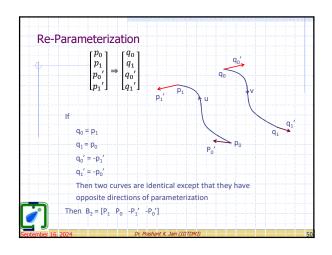


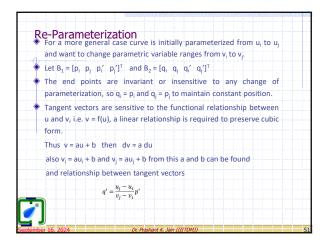


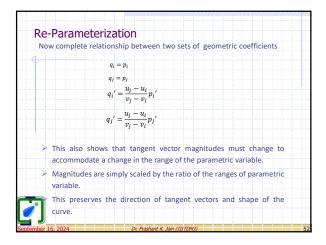


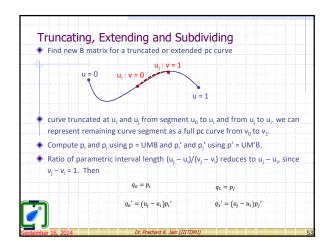


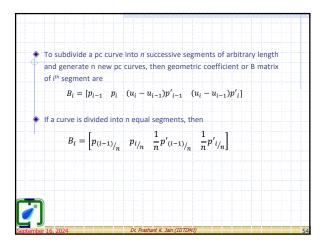


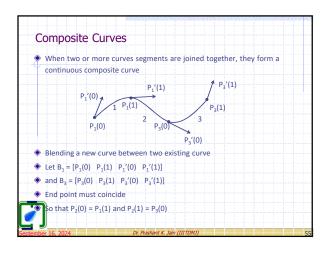


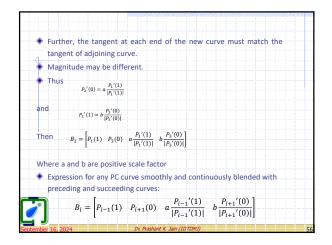


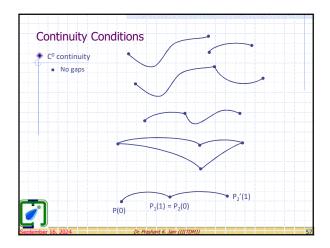


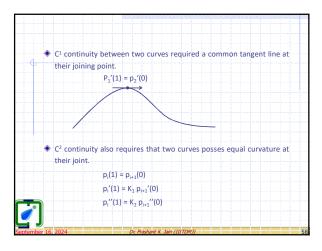








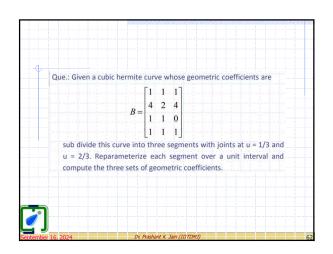




Que. 1: Given a cubic hermite curve whose geometric coefficients are $B = \begin{bmatrix} P_0 & P_1 & P_0' & P_1' \end{bmatrix}$ truncate the curve at u = 0.2 and u = 0.7 and reparameterize the remaining segment so that $v \in [0\ 1]$. Find the relationship between the geometric coefficients of truncated curve and those of original. Que. 2: Given a cubic hermite curve whose geometric coefficients are $B = \begin{bmatrix} 1 & 1 & 1 \\ 4 & 2 & 4 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ sub divide this curve into three segments with joints at u = 1/3 and u = 2/3. Reparameterize each segment over a unit interval and compute the three sets of geometric coefficients.

Que.: Given a cubic hermite curve whose geometric coefficients are $B = \begin{bmatrix} P_0 & P_1 & P_0' & P_1' \end{bmatrix}$ truncate the curve at u = 0.2 and u = 0.7 and reparameterize the remaining segment so that $v \in [0\ 1]$. Find the relationship between the geometric coefficients of truncated curve and those of original. P = UMB $B = \begin{bmatrix} P_0 & P_1 & P_0' & P_1' \end{bmatrix}$ $P(u) = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} MB$ $q_0 = P(0.2) = \begin{bmatrix} 0.2^3 & 0.2^2 & 0.2 & 1 \end{bmatrix} MB$ $q_1 = P(0.7) = \begin{bmatrix} 0.7^3 & 0.7^2 & 0.7 & 1 \end{bmatrix} MB$ Tangent vectors are sensitive to the functional relationship between u and v, i.e. v = f(u), a linear relationship is required to preserve cubic sections v and v i.e. v = f(u), a linear relationship is required to preserve cubic

Thus $\mathbf{v} = \mathbf{a}\mathbf{u} + \mathbf{b}$ then $\mathbf{d}\mathbf{v} = \mathbf{a}.\mathbf{d}\mathbf{u}$ also $v_i = au_i + b$ and $v_j = au_j + b$ from this \mathbf{a} and \mathbf{b} can be found and relationship between tangent vectors $q_0' = \begin{pmatrix} u_j - u_i \\ v_j - v_i \end{pmatrix} * P_0' \qquad q_0' = \begin{pmatrix} 0.7 - 0.2 \\ 1 - 0 \end{pmatrix} * P_0'$ $q_1' = \begin{pmatrix} u_j - u_i \\ v_j - v_i \end{pmatrix} * P_1' \qquad q_1' = \begin{pmatrix} 0.7 - 0.2 \\ 1 - 0 \end{pmatrix} * P_1'$ Now $\mathbf{q}(v) = VMB_1$ $\mathbf{q}(v) = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix} MB_1$ $B_1 = \begin{bmatrix} q_0 & q_1 & q_0' & q_1' \end{bmatrix}$ $B_1 = \begin{bmatrix} P(0.2) & P(0.7) & 0.5P_0' & 0.5P_1' \end{bmatrix}$



Dr. Prashant K. Jain September 16, 2024

