

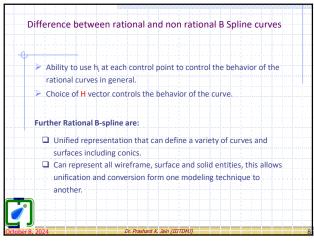
Advantage of Representing curves and surfaces as NURBS Non Rational Curves: defined by one polynomial Rational Curves: defined by the algebraic ratio of two polynomials. Each point is the ratio of two curves, just like homogeneous coordinates: $[x(u),y(u),z(u),w(u)] \rightarrow \left[\frac{x(u)}{x(u)},\frac{y(u)}{x(u)},\frac{z(u)}{x(u)}\right]$ Advantages: ■ Draw their theories from perspective geometry and Perspective invariant (the perspective image of rational curve is a rational curve, and can be evaluated in screen Unified representation that can define a variety of curves and surfaces including conic sections: circles, ellipses, etc. Piecewise cubic curve can not represent this. Can represent all wireframe, surface and solid entities, this allows unification and conversion from one modeling technique to another. ☐ Ability to use h, at each control point to control the behavior of the rational curves in general. Choice of H vector controls the behavior of the curve Non-uniformity permits either C^2 , C^1 or C^0 continuity at join points between curve segments. Non-uniformity also permits control points to be added to middle of curve

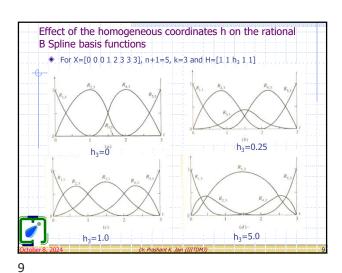
Rational B-Spline curve A Rational B-spline curve is the projection of a non rational (polynomial) B-spline curve defined in four dimensional (4D) homogenous coordinate space, back into three dimensional (3D) physical space. Non rational B-spline basis function Specifically:

 $P(t) = \sum_{i=1}^{n+1} B_i^h N_{i,k}(t)$ 4-D homogenous control polygon vertices for the non-rational 4-D B-spline curve Rational B-Spline Curves Projecting back into 3D space by dividing through by homogenous coordinate yield the rational B-spline curve. rational B-spline $P(t) = \frac{\sum_{i=1}^{n+1} B_i h_i N_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}(t)} = \sum_{i=1}^{n+1} B_i R_{i,k}(t)$ 3-D control polygon vertices for the

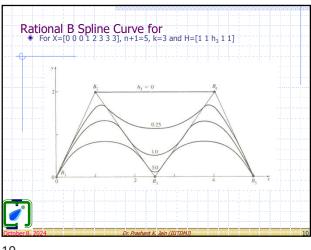
Rational B-Spline Curves $R_{i,k}(t) = \frac{h_i N_{i,k}(t)}{\sum_{i=0}^{n} h_i N_{i,k}(t)}$ h > 0 for all values of / Equation shows that $R_{i,k}(t)$ is a generalization of the non rational basis function N. (t). Substitute h_i=1: R_{iv}(t)=N_{iv}(t). The rational basis function R_{i,k}(t) have nearly all the analytical and geometric characteristics of their non-rational B-spline counterparts

Rational B-Spline Curves • Each rational basis function is positive or zero for all parameter values, i.e., $R_{i,k} \ge 0$ The sum of the rational B-spline basis for any parameter value t is one, i.e., $\sum_{i=1}^{n+1} R_{i,k}(t) = 1$ Except for k=1, each rational basis has precisely one maximum. A rational B-spline curve of order k (degree k-1) is ck-2 continuous everywhere. The maximum order of rational B-spline curve is equal to the number of defining polygon vertices. A rational B-spline curve exhibits the variation diminishing property. A rational B-spline curve generally follows the shape of the defining polygon. A rational B-spline curve lies within the union of convex hulls formed by k successive defining polygon vertices. Any projective transformation is applied to a rational B-spline curve by applying it to the defining polygon vertices; i.e., the curve is invariant with respect to a rojective transformation. This is a stronger condition than that for a non-rational 3-spline which is only invariant with respect to an affine transformation



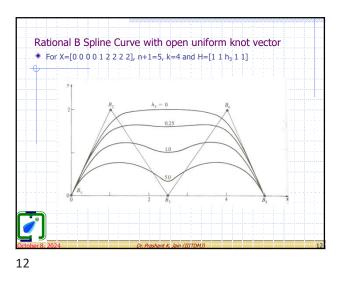


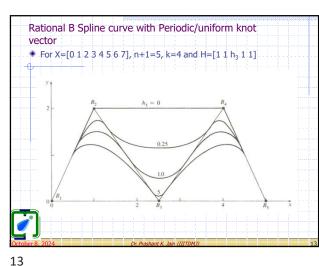
8





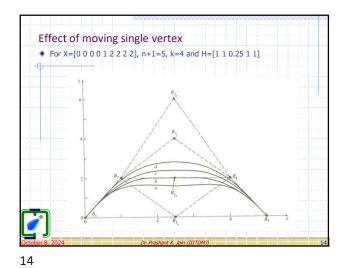
10

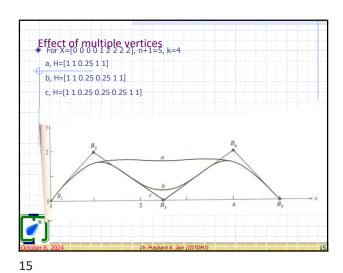




13

16





Derivatives of Rational B Spline
The derivatives of Rational B Spline curves can be obtained by formal differentiation. Specifically: $P'(t) = \sum_{i=1}^{n+1} B_i R'_{i,k}(t)$ $R'_{i,k}(t)$ $= \frac{h_i N'_{i,k}(t)}{\sum_{i=1}^{n+1} h_i N_{i,k}} - \frac{h_i N_{i,k} \sum_{i=1}^{n+1} h_i N'_{i,k}}{\left(\sum_{i=1}^{n+1} h_i N_{i,k}\right)^2}$ Evaluating these results at t=0 and t=n-k+2 yields $P'(0) = (k-1)\frac{h_2}{h_1}(B_2 - B_1)$ $P'(n-k+2) = (k-1)\frac{h_n}{h_{n+1}}(B_{n+1} - B_n)$

Representation of conic sections

Provide a single mathematical description capable of blending the conic sections in to free form curves.

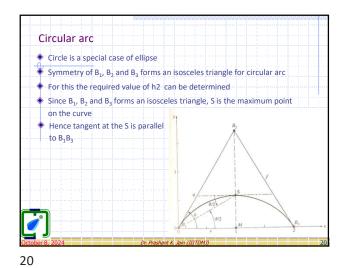
Consider a quadratic rational B spline defined by three vertices with knot vector $X=[0\ 0\ 0\ 1\ 1\ 1]$ and writing this as: $P(t) = \frac{h_1N_{1,3}(t)B_1 + h_2N_{2,3}(t)B_2 + h_3N_{3,3}(t)B_3}{h_1N_{1,3}(t) + h_2N_{2,3}(t) + h_3N_{3,3}(t)}$ Assume $h_1 = h_3 = 1$ $P(t) = \frac{\sum_{i=1}^{1} B_i h_i N_{i,i}(t)}{\sum_{i=1}^{1} h_i N_{i,i}(t)} = \sum_{i=1}^{1} B_i R_{i,i}(t)$ $P(t) = \frac{N_{1,3}(t)B_1 + h_2N_{2,3}(t)B_2 + N_{3,3}(t)B_3}{N_{1,3}(t) + h_2N_{2,3}(t) + N_{3,3}(t)}$

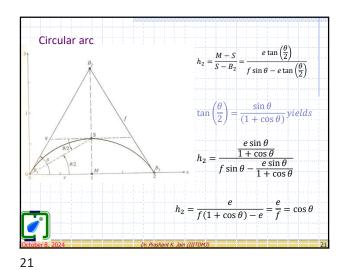
Conic sections $h_2=0 \quad \text{a straight line results.}$ $0 < h_2 < 1 \quad \text{an elliptic curve segment results.}$ $h_2=1 \quad \text{a parabolic curve segment results.}$ $h_2 > 1 \quad \text{a hyperbolic curve segment results.}$ $h_2 > 1 \quad \text{a hyperbolic curve segment results.}$ $h_2 > 1 \quad \text{a hyperbolic curve segment results.}$ $h_2 > 1 \quad \text{a hyperbolic curve segment results.}$ $P(t) = \frac{(1-t)^2 B_1 + 2 h_2 t (1-t) B_2 + t^2 B_3}{(1-t)^2 + 2 h_2 t (1-t) + t^2}$

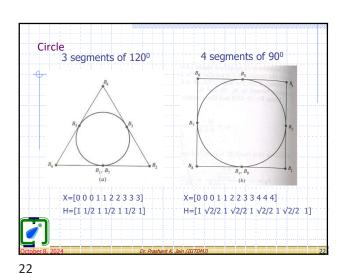
For t=1/2, P(t)=S which yields $S = \frac{1}{1+h_2} \frac{B_1+B_3}{2} + \frac{h_2}{1+h_2} B_2$ $S = \frac{M}{1+h_2} + \frac{h_2}{1+h_2} B_2$ writing the parametric equation of the straight line between M and B₂ gives $S = (1-u)M + uB_2 \text{ where } u \text{ is the parameter.}$ Equating coefficients $u = \frac{h_2}{1+h_2} andh_2 = \frac{u}{1-u} = \frac{M-S}{S-B_2}$ The parameter u controls the shape of the curve and its conic form. Hence, it is a good design tool.

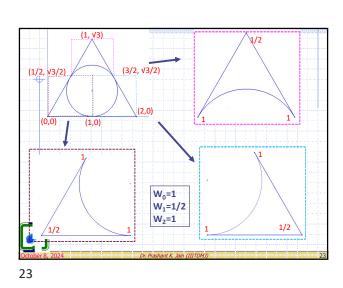
Dr. Prashant K. Jain 3

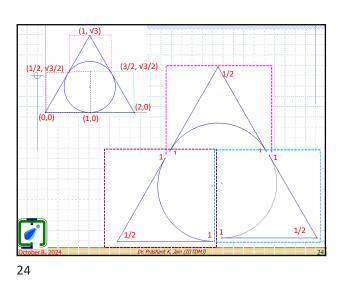
17

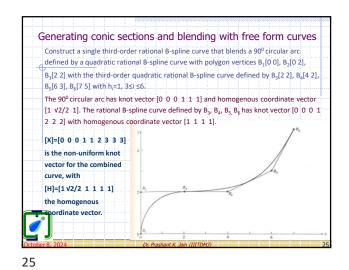


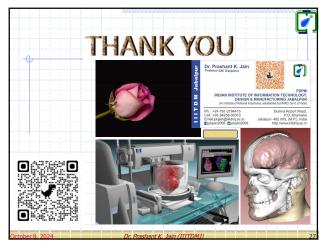












27