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Surfaces
Computer Aided Geometric Design
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Surface of revolution

Simplest method 

Revolve a two dimensional entity
 Line or a plane curve about an axis
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Conical Surface of revolution
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Surface of revolution
For parametric equation of a point on a surface of revolution  

the parametric equation of the entity to be rotated

function of the single parameter t. 

Rotation about an axis causes the location of the point to also be a 
function of the rotation angle Ø. 

Thus, a point on a surface of revolution is specified by two 
parameters t and Ø. 

It is bi-parametric function.

Rotation about the x-axis of an entity, initially lying in the xy plane, 
the surface equation is; 

𝑃 𝑡 = 𝑥 𝑡   𝑦 𝑡     𝑧 𝑡       0 ≤ 𝑡 ≤ 𝑡୫ୟ୶

𝑄(𝑡, 𝜑) = [𝑥 𝑡    𝑦 𝑡 cos 𝜑     𝑦(𝑡) sin 𝜑]

Dr. Prashant K. Jain (IIITDMJ)
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Sphere
Rotating plane curves also yields surfaces 

of revolution. 
A sphere is obtained by rotating an 

origin-centered semicircle in the xy
plane about the x-axis. 

the parametric equation of the circle    

the parametric equation of the sphere is 

𝑥 = 𝑟 cos 𝜃     0 ≤ 𝜃 ≤ 𝜋
𝑦 = 𝑟 sin 𝜃

𝑄 𝜃, 𝜑 = 𝑥 𝜃    𝑦 𝜃 cos 𝜑    𝑦 𝜃 sin 𝜑          0 ≤ 𝜃 ≤ 𝜋

= 𝑟 cos 𝜃     𝑟 sin 𝜃 cos 𝜑      𝑟 sin 𝜃 sin 𝜑     0 ≤ 𝜑 ≤ 2𝜋
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Ellipsoid

An ellipsoid of revolution is obtained by 
rotating parametric equation of an 
origin centered semi ellipse in the xy
plane. 

the parametric equation of the semi ellipse

parametric equation for any point on the 
ellipsoid of revolution is

𝑥 = 𝑎 cos 𝜃 0 ≤ 𝜃 ≤ 𝜋
𝑦 = 𝑏 sin 𝜃

𝑄 𝜃, 𝜑 = 𝑎 cos 𝜃    𝑏 sin 𝜃 cos 𝜑      𝑏 sin 𝜃 sin 𝜑      0 ≤ 𝜃 ≤ 𝜋
                                                                                                 0 ≤ 𝜑 ≤ 2𝜋
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Paraboloid

A paraboloid of revolution is obtained by rotating the parametric 
parabola

about the x-axis. The parametric surface is given by 

𝑥 = 𝑎𝜃ଶ        0 ≤ 𝜃 ≤ 𝜃୫ୟ୶

𝑦 = 2𝑎𝜃

𝑄 𝜃, 𝜑 = 𝑎𝜃ଶ    2𝑎𝜃 cos 𝜑        2𝑎𝜃 sin 𝜑                 0 ≤ 𝜃 ≤ 𝜃୫ୟ୶

                                                                                                0 ≤ 𝜑 ≤ 2𝜋
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Hyperboloid

A hyperboloid of revolution is obtained by rotating the parametric 
hyperbola

about the x-axis. The parametric surface is given by   

𝑥 = 𝑎 sec 𝜃           0 ≤ 𝜃 ≤ 𝜃୫ୟ୶

𝑦 = 𝑏 tan 𝜃

𝑄 𝜃, 𝜑 = 𝑎 sec 𝜃    𝑏 tan 𝜃 cos 𝜑      𝑏 tan 𝜃 sin 𝜑             0 ≤ 𝜃 ≤ 𝜃୫ୟ୶

                                                                                                          0 ≤ 𝜑 ≤ 2𝜋
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Surface of Revolution

Any parametric curve can be used to create a surface of revolution. 

Like cubic spline, Bezier and B-spline curves.
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Surface of Revolution
in matrix form a parametric space curve is given by

P(t)=[T] [N] [G]

where [T], [N] and [G] are parameter, blending function and geometry 
matrices, respectively. 

The general form of the matrix equation for a surface of revolution is

Q(t, ø)=[T] [N] [G] [S]

where [S] represents the  contribution due to rotation about an axis by 
the angle ø. For the specific case of rotation about the x-axis 

𝑆 =

1 0 0 0
0 cos 𝜑 sin 𝜑 0
0 0 0 0
0 0 0 1

Derivatives: Surface of Revolution

Formally differentiating yields the parametric derivatives for a surface of 
revolution. 

Specifically, the derivative in the axial direction is

Qt(t, ø)=[T’] [N] [G] [S]

and in the radial direction

Q ø(t, ø)=[T] [N] [G] [S’]

where the prime denotes appropriate differentiation.

The surface normal is given by the cross product of the parametric 
derivatives, i.e., 

n=Qt X Q ø
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Finding point on surface
Consider the line segment with end points P1[1  1  0] and P2[6  2  0] lying 
in the xy plane. Rotating the line about the x-axis yields a conical surface. 
Determine the point on this surface at t=0.5,

The parametric equation for the line segment from P1 to P2 is  

With cartesian components

𝜑 = 𝜋/3(60଴)

𝑃(𝑡) = [𝑥 𝑡     𝑦 𝑡       𝑧(𝑡)]

𝑃 𝑡 = 𝑃ଵ + 𝑃ଶ − 𝑃ଵ 𝑡       0 ≤ 𝑡 ≤ 1

𝑥(𝑡) = 𝑥ଵ + (𝑥ଶ − 𝑥ଵ)𝑡 = 1 + 5𝑡

𝑦(𝑡) = 𝑦ଵ + (𝑦ଶ − 𝑦ଵ)𝑡 = 1 + 𝑡

𝑧(𝑡) = 𝑧ଵ + (𝑧ଶ − 𝑧ଵ)𝑡 = 0

Contd…
October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 14
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Finding point on surface

The point                         on the surface of revolution is𝑄(1/2, 𝜋/3)

𝑄(1/2, 𝜋/3) = [1 + 5𝑡        1 + 𝑡 cos 𝜑          (1 + 𝑡) sin 𝜑]

=
7

2
         

3

2
cos

𝜋

3
         

3
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sin

𝜋

3

=
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3

4
         

3 3

4

= 3.5     0.75    1.3
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Sweep Surface
A three dimensional surface is obtained by traversing an entity, e.g., a line, 
polygon or curve, along a path in space called sweep surfaces.

Frequently used in geometric modeling. 

Consider the position vector P[x   y   z   1] swept along the path represented by 
the sweep transformation [T(s)]. The position vector Q(s) representing the 
resulting curve is given by

The transformation [T(s)] determines the shape of the curve. For example, if 
the path is straight line of length n parallel to the z-axis, then                           

𝑄(𝑠) = 𝑃[𝑇(𝑠)]          𝑠ଵ ≤ 𝑠 ≤ 𝑠ଶ

𝑇 𝑠 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 𝑛௦ 1

       0 ≤ 𝑠 ≤ 1
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Sweep Surface
The simplest sweep surface is obtained by traversing a line segment along a path. 

Parametric equation of a line segment is

The corresponding sweep surface is given by

[T(s)] is the sweep transformation. 

If the sweep transformation contains  only translations and/ or local or overall 
scalings, the resulting surface is planar. 

𝑃 𝑡 = 𝑃ଵ + 𝑃ଶ − 𝑃ଵ 𝑡      0 ≤ 𝑡 ≤ 1

𝑄 𝑡, 𝑠 = 𝑃 𝑡 𝑇 𝑠         0 ≤ 𝑡 ≤ 1,          𝑠ଵ ≤ 𝑠 ≤ 𝑠ଶ
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Sweep Surface

Consider the line segment in the xy plane and parallel to the y-axis defined by end 
points P1[0  0  0] and P2[0  3  0]. Determine the point at t=0.5, s=0.5 on the sweep 
surface generated by simultaneously translating the line 10 units along the x-axis and 
rotating it through 2 about the x-axis.

If the sweep transformation contains rotations, the resulting surface is 
non-planar. 
The helical sweep surface obtained by simultaneously translating along 
and rotating about the x-axis a line originally parallel to the y-axis.

Here the sweep transformation matrix is a translation followed by a rotation 
given by

The parametric equation of the line segment is

P(t)=P1+(P2- P1)t

= [0   0   0   1]+[0-0   3-0   0-0   1-1]t

= [0   3t   0   1]

The sweep surface is given by

Q(t, s)=[P(t)] [T(s)]

[𝑇(𝑠)] =

1 0 0 0
0 cos( 2𝜋𝑠) sin( 2𝜋𝑠) 0

0 − sin( 2𝜋𝑠) cos( 2𝜋𝑠) 0
𝑙𝑠 0 0 1

= 0  3𝑡   0    1

1 0 0 0
0 cos(2 𝜋𝑠) sin(2 𝜋𝑠) 0

0 − sin(2 𝜋𝑠) cos(2 𝜋𝑠) 0
𝑙𝑠 0 0 1

𝑄(0.5,0.5) = 0   1.5    0    1

1 0 0 0
0 −1 0 0
0 0 1 0
5 0 0 1

= 5   − 1.5   0    1
October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 19

Sweep Surface
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Sweep Surface
Sweep the planar square defined by vertices P1 [0  -1  1], P2 [0  -1  -1], 
P3 [0  1  -1], P4 [0  1  1] along the path x=10s, y=cos(𝜋s)-1 while 
maintaining the normal to the polygon in the instantaneous direction 
of the tangent to the path

The instantaneous direction of the path tangent is [10  -𝜋sin(𝜋s)  0]. 
The rotation angle about the z-axis to align the polygon normal with 
the tangent to the path is thus

The sweep transformation is thus

𝜓 = tanିଵ
−𝜋 sin( 𝜋𝑠)

10

𝑇(𝑠) =

cos 𝜓 sin 𝜓 0 0
− sin 𝜓 cos 𝜓 0 0

0 0 1 0
10𝑠 cos( 𝜋𝑠) − 1 0 1

Contd…
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Sweep Surface

The polygonal square at s=0.5 is thus given by

𝑄 =

0 −1 1 1
0 −1 −1 1
0 1 −1 1
0 1 1 1

0.954 −0.3 0 0
0.3 0.954 0 0
0 0 1 0
5 1 0 1

=

4.7 −1.954 1 1
4.7 −1.954 −1 1
5.3 −0.46 −1 1
5.3 −0.46 1 1

= tanିଵ
−𝜋

10

= −17.44௢

𝜓 = tanିଵ
−𝜋 sin

𝜋
2

10

At s=0.5 the rotation angle is

October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 22

Dr. Prashant K. Jain (IIITDMJ)October 17, 2024 33 October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 34

Piecewise surface representation

Analytical description does not exist
 Automobile bodies
 Aircraft fuselages and wings
 Ship hulls
 Sculptures
 Bottles
 Shoes

Surface represented in piece wise fashion
A vector valued parametric representation is used
 Axis independent
 Avoids infinite slope values
 Allows unambiguous representation of multi-valued surfaces
 Facilitates representation in homogeneous coordinates
 Compatible with use of 3D homogeneous coordinate transformations
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Piecewise surface representation

Consider spherical surface

Specific curve on surface defined by plane intersecting sphere

Consider intersection of unit sphere and a plane defined by the surface 
equation z=cosø1=a1=constant

The resulting curve is a parallel of latitude.

The parametric equation for a unit sphere is

Thus

Defines the intersection

𝑥ଶ + 𝑦ଶ + 𝑧ଶ = 1.0

𝑥ଶ + 𝑦ଶ = 1 − 𝑎ଵ
ଶ

October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 36

Piecewise surface representation
The plane = 0=constant is 
defined by

The intersection of this plane 
and a sphere yields a meridian of 
longitude. Solving these 
equations simultaneously yields 
the resulting curve; i.e.,

𝑥 sin 𝜃଴ − 𝑦 cos 𝜃଴ = 0

𝑐ଵ𝑥 − 𝑏ଵ𝑦 = 0

𝑦ଶ
𝑏ଵ

𝑐ଵ

ଶ

+ 1 + 𝑧ଶ = 1.0
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Spherical Surface Patch
The boundaries of a spherical surface patch on a unit sphere can be formed by 
four planes, two parallels of latitude and two meridians of longitude, intersecting 
the sphere. 

The vector valued parametric equation for the resulting surface patch Q(, ø) is

The surface patch is the locus of a point in three-dimensional space which moves 
with two degrees of freedom controlled by the two parameter variables  and ø, 
i.e., it is a biparametric

𝑄(𝜃, 𝜑) = cos 𝜃 sin 𝜑       sin 𝜃 sin 𝜑       cos 𝜑     𝜃ଵ ≤ 𝜃 ≤ 𝜃ଶ,       𝜑ଵ ≤ 𝜑 ≤ 𝜑ଶ

0 ≤ 𝜃 ≤
𝜋

2
𝑎𝑛𝑑

𝜋

4
≤ 𝜑 ≤

𝜋

2
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Piecewise surface representation

These curves are circular arcs.

Can be defined by two end points and the tangent vectors at the ends.

Four patch boundary curves are defined by the four position vectors at 
the corners, and eight tangent vectors, two at each corner. 

For the spherical patch, the tangent vectors are given by the parametric 
derivatives of Q(, ø), i.e., 

𝑄ఝ(𝜃, 𝜑) = cos 𝜃 cos 𝜑       sin 𝜃 cos 𝜑         − sin 𝜑

𝑄ఏ(𝜃, 𝜑) =
𝜕𝑄

𝜕𝜃
𝜃, 𝜑 = − sin 𝜃 sin 𝜑     cos 𝜃 sin 𝜑    0
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Piecewise surface representation

The shape of the interior of the surface near each corner is controlled 
by the twist vector or cross derivative at the corner. For the spherical 
surface patch, the cross derivative or twist vector is

Consequently a quadrilateral surface patch can be completely 
described by

𝑄ఏ,ఝ 𝜃, 𝜑 =
𝜕ଶ𝑄

𝜕𝜃𝜕𝜑
=

𝜕ଶ𝑄

𝜕𝜑𝜕𝜃
= − sin 𝜃 cos 𝜑       cos 𝜃 cos 𝜑      0

The 4 position vectors at the corners.
The 8 tangent vectors, two at each corner.
The 4 twist vectors at the corners.
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Piecewise surface representation

The normal to a surface patch at any point is given by the cross 
product of the parametric derivatives. 

Specifically for a spherical surface.

𝑄ఏ × 𝑄ఝ =

𝑖 𝑗 𝑘
− sin 𝜃 sin 𝜑 cos 𝜃 sin 𝜑 0
cos 𝜃 cos 𝜑 sin 𝜃 cos 𝜑 − sin 𝜑

= − cos 𝜃 sinଶ 𝜑      sin 𝜃 sinଶ 𝜑       − sin 𝜑 cos 𝜑

Mapping Parametric Surfaces

A surface in object space is represented 
by the functions that map this parametric 
surface into xyz object space, i.e.,

x=x(u, w)

y=y(u, w)

z=z(u, w)
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Mapping Parametric Surfaces
Map the surface described by

x=3u+w                  0u 1

y=2u+3w+uw        0w 1 

z=0

in parametric space into object space. 

since z=constant=0, the surface in object space is also two-dimensional 
lying in the z=0 plane.

The boundaries of the surface in object space are defined by mapping the 
boundaries of the rectangle in parametric space to object space. Thus, for

u=0;          x=w, y=3w    and   y=3x

u=1           x=w+3, y=2(2w+1)    and    y=2(2x-5)

w=0          x=3u, y=2u    and    y=(2/3)x

w=1          x=3u+1, y=3u+3    and    y=x+2 



PDPM IIITDM Jabalpur October 17, 2024

Dr. Prashant K. Jain 6

October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 44

Mapping Parametric Surfaces
Map the surface described by                              

x(u, w)=(u-w)2 0u 1

y(u, w)=u-w2 0w 1

z(u, w)=uw in parametric space into object space. 

Calculate the coordinates of the point at u=w=0.5 on the surface in object space.

First determine the boundary curves

u=0;        x=w2, y=-w2, z=0    and    x=-y, z=0

u=1;        x=(1-w)2, y=1-w2, z=w    and    x=(1-z)2, y=1-z2

w=0;       x=u2, y=u, z=0    and    x=y2, z=0

w=1;       x=(u-1)2, y=u-1, z=u    and    x=y2, z=1+y 

Writing the parametric surfaces as the vector valued function

Q(u, w)=[x(u, w)    y(u, w)    z(u, w)]

=[(u-w)2 u-w2 uw] 

yields Q(0.5, 0.5)=[0    0.25    0.25]                                                     

as the coordinates of the point at u=w=0.5.

Mapping Parametric Surfaces
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Three Dimensional Surface Mapping
(a) X component
(b) Y component
(c) Z component
(d) Complete

Each of the components of the 
surface in object space is a 
function of the parameters u, w. 
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Bilinear surface
Constructed from the four corner points of the unit square in parametric 
space, i.e., P(0, 0), P(0, 1), P(1, 1), P(1, 0). 

Any point in the interior of the surface is specified by linearly interpolating 
between opposite boundaries of the unit square. 

Any point in the interior of the parametric square is given by

Q(u, w)=P(0, 0)(1-u)(1-w) + P(0, 1)(1-u)w + P(1, 0)u(1-w) + P(1, 1)uw

In matrix form

𝑄 𝑢, 𝑤 = 1 − 𝑢 𝑢
𝑃(0,0) 𝑃(0,1)

𝑃(1,0) 𝑃(1,1)
1 − 𝑤

𝑤

October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 48

Bilinear surface

Determine the point on the bilinear surface defined by 
P(0, 0)= [0   0   1], 
P(0, 1)= [1   1   1], 
P(1, 0)= [1   0   0], 
P(1, 1)= [0   1   0], 
i.e., the ends of opposite diagonals on opposite faces of a unit cube in 

object space corresponding to u = w = 0.5 in parametric space.

17-Oct-24 49

Bilinear surface
the surface in object space is a vector valued function

Q(u, w) = [x(u, w)    y(u, w)    z(u, w)]

then we have

Q(0.5, 0.5) = [0   0   1](1-0.5)(1-0.5) + [1   1   1] (1-0.5) (0.5)

+ [1   0   0] (0.5) (1-0.5) + [0   1   0] (0.5) (0.5)

= 0.25 [0   0   1] + 0.25 [1   1   1]+ 0.25 [1   0   0] 

+ 0.25 [0   1   0] 

= [0.5   0.5   0.5] 

Dr. Prashant K. Jain (IIITDMJ)October 17, 2024 49

A ruled surface is generated by a straight line moving along a path with 
one degree of freedom.

Ruled surface is obtained by linearly interpolating between two known 
boundary curves associated with the opposite sides of the unit square in 
parametric space, say P(u, 0) and P(u, 1). 

The surface is given by

Q(u, w) = P(u, 0) (1-w) + P(u, 1)w

or 

Again Q(0, 0)=P(0, 0), etc., i.e., the ends of the specified curves are the 
corners of the surface, are coincident. 

Two of the edges of the blended or interpolated surface are coincident 
with the given curves,  i.e., 

Q(u, 0) = P(u, 0) and Q(u, 1) = P(u, 1)

𝑄 = 𝑥(𝑢, 𝑤) 𝑦(𝑢, 𝑤) 𝑧(𝑢, 𝑤 = 1 − 𝑤 𝑤
𝑃(𝑢, 0)

𝑃(𝑢, 1)

Ruled and Developable Surfaces
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Alternately, 

the curves corresponding to P(0, w) and P(1, w) are assumed known. The ruled 
surface is given by

Q(u, w) = P(0, w) (1-u) + P(1, w)u

or 𝑄 = 𝑥(𝑢, 𝑤) 𝑦(𝑢, 𝑤) 𝑧(𝑢, 𝑤

= 1 − 𝑢 𝑢
𝑃(0, 𝑤)

𝑃(1, 𝑤)

Ruled and Developable Surfaces
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Again the corners of the 
surface are coincident with 
the ends of the given curve, 
and the appropriate edges of 
the blended surface are 
coincident with the given 
boundary curves. 

Consider a ruled surface formed by linearly blending the curves

P(0, w) and P(1, w). 

Determine the point on the surface Q(u, w) at u=w=0.5.

P(0, w) is a third-order (k=3) open B-spline curve with defining polygon vertices given 
by B1[0  0  0], B2[1  1  0], B3[1  1  0], B4[2  1  0] and B5[3  0  0]. 

Notice the double vertex B2=B3 which yields a cusp in the curve. 

P(1, w) is also a third order open B-spline curve. 

Its defining polygon vertices are B’1[0  0  6], B’2[1  1  6], B’3[2  1  6], B’4[3  0  6]. 

Ruled and Developable Surfaces
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B-spline curves yields open uniform knot vectors for P(0, w) and P(1, w), 
respectively, of

[X] = [0   0   0   1   2   3   3   3]

[Y] = [0   0   0   1   2   2   2]

the un-normalized parameter ranges for the two curves are different, 

0 ≤ t ≤ 3 for P(0, w) and 0 ≤ s ≤ 2 for P(1, w). 

The ‘normalized’ value for the ruled surface Q at w=0.5 corresponds to t=1.5 for 
P(0, w) and to s=1.0 for P(1, w).

P(0, w) yields:

P(0, w) = P(t)

= B1N1,3(t) + B2N2,3(t) + B3N3,3(t) + B4N4,3(t) + B5N5,3(t)

At w=0.5 or t=1.5

P(0, 0.5) = P(1.5)= (0)B1 + 0.125B2 + 0.75B3 + 0.125B4 + (0)B5

= 0.125 [1   1   0] + 0.75 [1   1   0] + 0.125[2   1   0]

= [1.125   1   0]

Ruled and Developable Surfaces
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Similarly, 

P(1,w) = P(s)

= B1’N’1,3+ B’2N’2,3 + B’3N’3,3(s) + B’4N’4,3(s)

At w = 0.5 or s = 1.0

P(1, 0.5) = P(1.0) = (0)B’1 + 0.5B’2 + 0.5B’3 + (0)B’4
= 0.5[1   1   6] + 0.5[2   1   6]

= [1.5   1   6]

To obtain the point on the ruled surface yields

Q(u, w) = P(0, w) (1-u) + P(1, w) u

and      Q(0.5, 0.5) = P(0, 0.5) (1-0.5) + P(1, 0.5) (0.5)

= 0.5 [1.125   1   0] + 0.5 [1.5   1   6]

= [1.3125   1   3] 

Ruled and Developable Surfaces
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Ruled and Developable Surfaces

A ruled surface is generated by a straight line 
moving along a path with one degree of 
freedom. 
Ruled surface is identified using the following 
technique. 
At any point on the surface, rotate a plane 
containing the normal to the surface at that 
point about the normal. 

If there is at least one orientation in which every 
point on the edge of the plane contacts the 
surface, the surface is ruled in that direction. 

If the edge of the rotating plane completely 
touches the surface in more than one 
orientation, the surface is multiply ruled at 
that point.
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Developable Surfaces

All ruled surfaces are not developable surface, however all developable 
surfaces are ruled.

To find whether surface or a portion of a surface is developable or not 
curvature of parametric surface is considered.

At any point P on a surface, the curve 
of intersection of a plane containing 
the normal to the surface at P and the 
surface, has a curvature K. 
As the plane is rotated about the 
normal, the curvature changes. 
There will be unique directions for 
which the curvature is a minimum and 
a maximum exists. 
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Developable Surfaces

Euler the great Swiss mathematician, Showed that unique directions for 
which the curvature is a minimum and a maximum exists. 

The curvatures in these directions are called the principle curvatures, Kmin

and Kmax. 

The principal curvature directions are orthogonal. 

Two combinations of the principal curvatures are of particular interest, 
 Average 

and 

 Gaussian curvatures.

For a developable surface the Gaussian curvature K is everywhere 
zero, i.e., K=0.

2
maxmin  

H

maxmin K
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Developable Surfaces

𝐻 =
𝐴 𝑄௪

ଶ − 2𝐵𝑄௨ ⋅ 𝑄௪ + 𝐶 𝑄௨
ଶ

2 𝑄௨ × 𝑄௪
ଷ

𝐴  𝐵  𝐶 = 𝑄௨ × 𝑄௪ ⋅ 𝑄௨௨ 𝑄௨௪ 𝑄௪௪

𝐾 =
𝐴𝐶 − 𝐵ଶ

𝑄௨ × 𝑄௪
ସ

where

Dill has shown that for bi-parametric surfaces the average and 
Gaussian curvatures are given by:

ĸminĸmax K Shape

Same Sign > 0 Elliptic (bump or hollow)

Opposite sign < 0 Hyperbolic (saddle point)

One or both 
zero

0 Cylindrical/ conical (ridge, 
hollow, plane)

Effect of Gaussian curvature
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Show that an elliptic cone is a developable surface.
Rewriting equation for a parametric elliptic cone in terms of u and w 
yields

The partial derivatives are:

𝑄(𝑢, 𝑤) = 𝑎𝑢 cos 𝑤 𝑏𝑢 sin 𝑤 𝑐𝑢

𝑄௨ = 𝑎 cos 𝑤 𝑏 sin 𝑤 𝑐

𝑄௪ = −𝑎𝑢 sin 𝑤 𝑏𝑢 cos 𝑤 0

𝑄௨௪ = −𝑎 sin 𝑤 𝑏 cos 𝑤 0

𝑄௨௨ = 0 0 0

𝑄௪௪ = −𝑎𝑢 cos 𝑤 −𝑏𝑢 sin 𝑤 0

𝑄௨ × 𝑄௪ = −𝑏𝑐𝑢 cos 𝑤 −𝑎𝑐𝑢 sin 𝑤 𝑎𝑏𝑢

𝑄௨ × 𝑄௪
ଶ = (𝑎𝑏𝑢)ଶ

𝑐

𝑎
cos 𝑤

ଶ

+
𝑐

𝑏
sin 𝑤

ଶ

+ 1 ≠ 0    𝑢 > 0
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And

Hence, using equation

everywhere on the surface, 

Hence the surface is developable.

𝐴 = −𝑏𝑐𝑢 cos 𝑤 −𝑎𝑐𝑢 sin 𝑤 𝑎𝑏𝑢 ⋅ 0 0 0 = 0

𝐵 = −𝑏𝑐𝑢 cos 𝑤 −𝑎𝑐𝑢 sin 𝑤 𝑎𝑏𝑢 ⋅ −𝑎 sin 𝑤 𝑏 cos 𝑤 0

= 𝑎𝑏𝑐𝑢 sin 𝑤 𝑐𝑜𝑤 − 𝑎𝑏𝑐𝑢 sin 𝑤 cos 𝑤 = 0

𝐶 = −𝑏𝑐𝑢 cos 𝑤 −𝑎𝑐𝑢 sin 𝑤 𝑎𝑏𝑢 ⋅ −𝑎𝑢 cos 𝑤 −𝑏𝑢 sin 𝑤 0

= 𝑎𝑏𝑐𝑢ଶ cosଶ 𝑤 + 𝑎𝑏𝑐𝑢ଶ sinଶ 𝑤 = 𝑎𝑏𝑐𝑢ଶ

=
(0)(𝑎𝑏𝑐𝑢ଶ) − (0)

𝑄௨ × 𝑄௪
ସ

= 0
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𝐾 =
𝐴𝐶 − 𝐵ଶ

𝑄௨ × 𝑄௪
ସ

Linear Coons Surface
If the four boundary curves P(u, 0), P(u, 1), P(0, w) and P(1, w) are known 

and a bilinear blending function is used for the interior of the surface 
patch, a linear Coons surface is obtained. 

At first glance it might be assumed that a simple sum of the singly ruled 
surface in the two directions u, w would yield the desired result. If this 
is done then

Q(u, w) = P(u, 0) (1-w) + P(u, 1)w + P(0, w) (1-u) + P(1, w)u
at the corners of the surface patch yields, e.g.,

Q(0, 0) = P(0, 0) + P(0, 0)=2P(0, 0)

and at the edges, e.g., 

Q(0, w) = P(0, 0) (1-w) + P(0, 1)w + P(0, w)
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Linear Coons Surface
The correct result is obtained by subtracting the excess contribution to 

the surface due to duplication of the corner point. 

This yield

Q(u, w) = P(u, 0) (1-w) + P(u, 1)w + P(0, w) (1-u) + P(1, w)u                      
– P(0, 0) (1-u) (1-w) – P(0, 1) (1-u)w – P(1, 0)u(1-w) – P(1, 1)uw

Here, at the corners, 

Q(0, 0) = P(0, 0), etc.

and along the boundaries, 

Q(0, w) = P(0, w)

Q(u, 1) = P(u, 1)
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Linear Coons Surface

In matrix form, equation is

or more compactly as

𝑄(𝑢, 𝑤) = 1 − 𝑢 𝑢
𝑃(0, 𝑤)

𝑃(1, 𝑤)
+ 𝑃(𝑢, 0) 𝑃(𝑢, 1)

1 − 𝑤
𝑤

− 1 − 𝑢 𝑢
𝑃(0,0) 𝑃(0,1)

𝑃(1,0) 𝑃(1,1)
1 − 𝑤

𝑤

𝑄(𝑢, 𝑤) = 1 − 𝑢 𝑢 1

−𝑃(0,0) −𝑃(0,1) 𝑃(0, 𝑤)

−𝑃(1,0) −𝑃(1,1) 𝑃(1, 𝑤)

𝑃(𝑢, 0) 𝑃(𝑢, 1) 0

1 − 𝑤
𝑤
1
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Coons Bi-cubic Surface

Linear Coons Surface
 Are not sufficiently flexible for many 

applications.

The coons bi-cubic surface patch uses 
normalized cubic splines for all four 
boundary curves. 

Cubic blending functions are used to 
define the interior of the patch. 

Thus, each boundary curve is of the 
general form

P(t) = B1 + B2t + B3t2 + B4t3

0≤ t ≤ 1
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Coons Bi-cubic Surface

For a single normalized cubic spline segment with known tangent and 
position vectors at the ends, each of the four boundary curves, P(u, 0), 
P(u, 1), P(0, w) and P(1, w), is given by

P(t) = [T] [N] [G]

where t becomes u or w as appropriate and P1, P2, P1’, P2’ are the position 
and tangent vectors at the ends of the appropriate boundary curve.

= 𝑡ଷ 𝑡ଶ 𝑡 1

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

𝑃ଵ

𝑃ଶ

𝑃ଵ
ᇱ

𝑃ଶ
ᇱ

        0 ≤ 𝑡 ≤ 1
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Coons Bi-cubic Surface
The cubic blending function used for both parametric directions is 
identical to the one used to blend the interior of a normalized cubic 
spline curve; i.e., 

[F] = [ F1(t)      F2(t)      F3(t)      F4(t) ] = [T] [N]

Blending functions are as:

F1(t) = 2t3 – 3t2 + 1

F2(t) = -2t3 + 3t2

F3(t) = t3 – 2t2 + t

F4(t) = t3 – t2

Where t is either u or w as appropriate.

= 𝑡ଷ 𝑡ଶ 𝑡 1

2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0
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Coons Bi-cubic Surface

The definition for a Coons bi-cubic patch is

for 0 ≤ u ≤ 1 and 0 ≤ w ≤ 1. 

The definition can be more compactly written as

Q(u, w) = [U] [N] [P] [N]T [W] 
where [U] = [u3 u2 u     1] and [W]T = [w3 w2 w     1]

𝑄(𝑢, 𝑤) = 𝐹ଵ(𝑢) 𝐹ଶ(𝑢) 𝐹ଷ(𝑢) 𝐹ସ(𝑢) ×

𝑃(0,0) 𝑃(0,1) 𝑃௪(0,0) 𝑃௪(0,1)
𝑃(1,0) 𝑃(1,1) 𝑃௪(1,0) 𝑃௪(1,1)
𝑃௨(0,0) 𝑃௨(0,1) 𝑃௨௪(0,0) 𝑃௨௪(0,1)

𝑃௨(1,0) 𝑃௨(1,1) 𝑃௨௪(1,0) 𝑃௨௪(1,1)

𝐹ଵ(𝑤)
𝐹ଶ(𝑤)
𝐹ଷ(𝑤)

𝐹ସ(𝑤)
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Coons Bi-cubic Surface

A bi-cubic surface patch is defined by 
the four position vectors at the 
corners, eight tangent vectors, two 
at each corner, the four twist vectors 
at the corners, and the four cubic 
blending functions F1, F2, F3 and F4.
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Derivatives of Bi-cubic Surface
The parametric derivatives at any point on a bi-cubic surface are obtained  by formally 

differentiating 

Qu(u, w) = [U’] [N] [P] [N]T [W]

Qw(u, w) = [U] [N] [P] [N]T [W’]

Quw(u, w) = [U’] [N] [P] [N]T [W’]

Quu(u, w) = [U’’] [N] [P] [N]T [W]

Qww(u, w) = [U] [N] [P] [N]T [W’’]

Where the primes denote differentiation with respect to the appropriate variable and

[U’] = [3u2 2u    1   0]

[W’]T = [3w2 2w   1   0]

[U’’] = [6u   2   0   0]

[W’’]T = [6w   2   0   0]

The normal to the surface, which is important in hidden surface, illumination model, 
and numerical control calculations, is given by

n = Qu x Qw
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Effect of tangent vector magnitude

(a) 1;  

(b) 10;  

(c) 100;  

(d) 1000
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Effect of twist vector magnitude

The magnitude of the twist vector component at P(0, 0) is 

(a) 10;  

(b) 100;  

(c) 1000;    

(d) 10,000.
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Bezier Surfaces

Schematic of defining polygon net
Bezier surface nomenclature

Coons bicubic surfaces provide a flexible and powerful surface design tool. However, 
practical usage suffers from the necessity of specifying precise, non-intuitive 
mathematical information, e.g., position, tangent and twist vectors.
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Bezier Surfaces
A Bezier surface is given by

where Jn, i(u) and Km, j(w) are the Bernstein basis functions in the u and w 
parametric directions. Repeating the definition previously given for 
convenience yields

with

The Bi, j’s are the vertices of a defining polygon net in u and w directions, 
respectively. 

For quadrilateral surface patches the defining polygon net must be topologically 
rectangular, i.e., the net must have the same number of vertices in each 
‘row’.

 
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Bezier Surfaces

Many properties of the surface are similar to curves and are known.
The degree of the surface in each parametric direction is one less than the 
number of defining polygon vertices in that direction.

The continuity of the surface in each parametric direction is two less than 
the number of defining polygon vertices in that direction.

The surface generally follows the shape of the defining polygon net.

Only the corner points of the defining polygon net and the surface are 
coincident.

The surface is contained within the convex hull of the defining polygon 
net.

The surface does not exhibit the variation diminishing property. The 
variation diminishing property for bi-variant surfaces is both undefined 
and unknown.

The surface is invariant under an affine transformation.
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Effect of increasing magnitude of tangent vector
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Effect of change in tangent vector direction and 
magnitude of twist vector
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Bezier Surfaces

In matrix form a Cartesian product Bezier surface is given by
Q(u, w) = [U] [N] [B] [M]T [W]

where 
   1...1 nn uuU

   Tmm wwW 1...1

 

















mnn

m

BB

BB

B

,0,

,00,0

...

.........

...
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Bezier Surfaces

For the specific case of a 4x4 bicubic Bezier surface 

Equation reduces to 

  
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Bezier Surfaces

A Bezier surface need not be square.  

For a 5x3 net equation yields

  
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Derivatives of a Bezier surface

The derivatives of a Bezier surface are obtained by formal 
differentiation of equations. 

First and second parametric derivatives are
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Bezier surface

The relationship between a bi-cubic Bezier and bi-cubic Coons surface is 
easily found. 

Recalling equations and equating them yields

QCoons(u, w) = QBezier(u, w)

[U] [NC] [P] [NC]T [W] = [U] [NB] [B] [NB]T [W]  

where [NC] and [NB] are known equations. Hence the bicubic Coons 
surface geometric matrix [P] is given in terms of the Bezier surface 
polygon net as

𝑃 = 𝑁஼
ିଵ 𝑁஻ 𝐵 𝑁஻

் 𝑁஼
் ିଵ
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Bezier surface
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• Lower right 2x2 submatrix confirms that the center four defining polygon net
vertices influence the twist at the bi-cubic Bezier patch corners.

• The twist at a corner controlled by not only the center polygon vertices but also by
the adjacent tangent vectors.

• In fact, the twist at the corner is controlled by the shape of the nonplanar
quadrilateral formed by the corner, the two adjacent boundary points and the
adjacent center point.

In matrix form
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Bezier surface

Similarly the inverse relationship between [P] and [B] which gives the Bezier 
polygon net vertices in terms of the Coons bi-cubic surface parameters is
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Joining two Bezier Patch

For C0 continuity along the edge of two boundary curves and hence two boundary 
polygons along edge must be coincident.

For C1 continuity across the patch boundary, surface normal direction along boundary 
edge must be same. Two conditions may be used to achieve this:
 Four polygon net lines that meet at and cross the boundary edge to be collinear.

 Three polygon net edges meeting at the ends of the boundary curve to be coplanar.
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Blending of two Bezier surface patches
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B Spline Surface

where, Ni, k(u) and Nj, l(w) are the B-spline basis functions in the bi-parametric u 
and w directions, respectively. 

The definition for the basis functions given as 

where the xi and yj are elements of knot vectors. 

Again the Bi, j’s are the vertices of a defining polygon net.
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Properties of B Spline Surface

Non-uniform knot vectors can be used in both parametric directions. 

Although it is common to use the same type of knot vectors in both 
parametric directions, it is not required.

Because the B-spline basis is used to describe both the boundary 
curves and to blend the interior of the surface, several properties of 
the B-spline surface are immediately known:
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 The maximum order of the surface in each parametric direction is equal to the 
number of defining polygon vertices in that direction.

 The continuity of the surface in each parametric direction is two less than the order 
in each direction; i.e., Ck-2 and Cl-2 in the u and w directions, respectively.

 The surface is invariant with respect to an affine transformation; i.e., the surface is 
transformed by transforming the defining polygon net.

 The variation diminishing property for B-spline surfaces is currently not known.

 The influence of a single polygon net vertex is limited to                 spans in each 
parametric direction.

 If the number of defining polygon net vertices is equal to the order in each 
parametric direction and there are no interior knot values, then the B-spline surface 
reduces to a Bezier surface. 

 If triangulated, the defining polygon net forms a planar approximation to the surface.

 The surface lies within the convex hull of the defining polygon net formed by taking 
the union of all convex hulls of K, l neighbouring polygon net veritces.

2,2 lk 

Properties of B Spline Surface
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Effect of collinear vertices

Small interior flat region due to three collinear net vertices in u
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Effect of collinear vertices

Larger interior flat region due to five collinear net vertices in u
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Effect of collinear vertices

Flat region embedded within sculptured surface
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Effect of multiple coincident net lines

Fourth order B-Spline surfaces with multiple coincident net lines
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Local control in B-Spline surfaces
The excellent local control properties of B-spline curves carry over to B-spline surfaces. 

an open bicubic (k=l=4) B-spline surface is defined by a 9x9 (m=n=8) polygon net. The polygon 
net, is flat except for the center point. 

The open knot vector in both parametric directions is 

[0  0  0  0  1  2  3  4  5  6  6  6  6]. 

Thus, there are six parametric spans in each direction, i.e.,  

0 - 1, 1 - 2, …, 5 - 6. 

Each parametric quadrilateral, e.g., 0  u  1, 0  w  1, forms a B-spline surface subpatch. 

The influence of the displaced 

point is confined to              

spans or sub-patches. 2,2 lk polygon net

parametric lines of each parametric 
interval, at u, w = 0, 1, 2, 3, 4, 5, 6.

B-Spline surface
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Properties of B Spline Surface

The parametric derivatives of a B-spline surface are obtained by 
formally differentiating.
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Closed Periodic B-spline surfaces
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Rational B-spline surfaces

Projecting back into three-dimensional space by dividing through by the 
homogenous coordinate gives the rational B-spline surface.
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It is convenient to assume hi,j  0 for all i, j.

where the Bi, j’s are the 3D defining polygon net points and the Si, j(u, w) are 
bivariant rational B-spline surface basis functions

where the Bh
i,j’s are the 4D homogenous defining polygon vertices and Ni, k(u) and 

Mj, l(w) are the non-rational B-spline basis functions.
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Properties of Rational B-spline surfaces

Spline surfaces have similar analytic and geometric properties to their 
nonrational counterparts. 

Specifically,

The sum of the rational surface basis functions for any u, w values is

Each rational surface basis function is positive or zero for all parameter values 
u, w, i.e., Si, j  0.

Except for k=1 or l=1, each rational surface basis function has precisely one 
maximum.

The maximum order of a rational B-spline surface in each parametric 
direction is equal to the number of defining polygon vertices in that direction.

A rational B-spline surface of order k, l (degree k-1, l-1) is Ck-2 , Cl-2 continuous 
everywhere.
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Properties of Rational B-spline surfaces

A rational B-spline surface is invariant with respect to a projective 
transformation; i.e., any projective transformation can be applied to the surface 
by applying it to the defining polygon net. Note this is a stronger condition than 
that for a nonrational B-spline surface.

The surface lies within the convex hull of the defining polygon net formed by 
taking the union of all convex hull of k, l neighboring polygon net vertices.

The variation diminishing property is not known for rational B-spline surface.

The influence of a single polygon net vertex is limited to k/2, l/2 spans in each 
parametric direction.

If triangulated, the defining polygon net forms a planar approximation to the 
surface.

If the number of defining polygon net vertices is equal to the order in each 
parametric direction and there are no duplicate interior knot values, the rational 
B-spline surface is a rational Bezier surface.
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h1,3 = h2,3 = 1, 

is identical to the nonrational B-spline surface

Defining polygon net

Rational B-spline surfaces with n+1 = 5, m+1 = 4, k = l= 4

h1,3 = h2,3 =0 

h1,3 = h2,3 = 5 
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Rational B-splined surface of revolution
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Derivatives of a rational B-spline surface

The derivatives of a rational B-spline surface are obtained by formal 
differentiation and the results are:
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Where      and      are the numerator and denominator, respectively, with 
derivatives  
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A quadratic surface element within a more general rational B-spline surface. Airfoil leading edge.  (a) Polygon net;  (b) surface. Ship stern  
(c) Polygon net;  (d) surface. A cylinder as part of a more general surface.  (e) Polygon net;  (f) surface.
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Sixteen point form
It may be difficult or impractical to provide tangents and twist vectors to 
define cubic patch

48 degrees of freedom or algebraic coefficients need to be supplied
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Now expand the algebraic form of the patch p = UAWT to obtain

a33u3w3 + a32u3w2 + ….. +  a00 = p(u, w)

we can generate 16 of these equations, one for each of the 16 points. 

Let us use the u, w values. Thus,

a33 (0)3(0)3 + a32 (0)3(0)2 + ……..... +  a00 = p(0, 0)

a33 (1/3)3(0)3 + a32 (1/3)3(0)2 + ….. +  a00 = p(1/3, 0)

- -

- -

a33 (2/3)3(1/3)3 + a32 (2/3)3(1/3)2 + .. + a00 = p(2/3, 1/3)

- -

- -

a33 (1)3(1)3 + a32 (1)3(1)2 + ……….. +  a00 = p(1, 1)  

In matrix form, this set of equations becomes

Ea = p

a = E-1 p  
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Investigate the 16- point solution for the geometric form. 

We can rewrite p = UMBMTWT as p = UNPNTWT

The B matrix is replaced by a Matrix P

By doing the indicated algebra, we find N to be
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Same as found for B-spline curves
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Degenerate Surfaces and Pathological Conditions

Degenerate boundary curves

Superimposed corners

Internal degeneracies

The simplest degenerate patch is a point where 

p00 = p10 = p01 = p11 and all other coefficients are identically equal to 
zero. 

A patch degenerates to a straight line when 

pu
oo = pu

10 = p10 – p00 and all other coefficients are zero. 
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Degenerate Surfaces

For the three-sided patch if we assume that p00 = p10, 

then the B matrix is























111011

010001

11101100

01000100

)(

0

0
uwuwu

uwuwu

ww

ww

a

ppp

ppp

pppp

pppp

B

October 17, 2024 Dr. Prashant K. Jain (IIITDMJ) 135

Degenerate Surfaces

Instead of a zero length fourth side, one of the sides does double duty. 

Its B matrix might be as follows:
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Degenerate Surfaces

When points diagonally opposite each other are coincident, 

The B matrix would be as follows:
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Degenerate Surfaces

An interesting shape may be obtained by joining the remaining 
diagonally opposite pair of points with the following B matrix:
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Curves on Surfaces
A surface provides a two-
dimensional space suitable for 
supporting the vector analytic 
representation of curves. 

Consider the curve on the surface. 
This curve is defined in the u, w 
parametric space of the patch. 

The points on the curve have vector 
components in the u and w 
directions. Thus,

C(t) = u(t) + w(t)

Then, we define c(t) as

c(t) = TMBc

T = [t3 t2 t    1]

Bc = [c0 c1 ct
0 ct

1]T
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To determine the coordinates of points on this curve in object space, first compute 
pairs of u, w values for successive values of t. 
Substitute these u, w values into the surface equation, 
say p(u, w) = UMBsMTWT, to obtain a sequence of x, y, z coordinates of points in 
object space. 
These points are necessarily on the patch. This process selects only those points on 
the patch that satisfy the curve equation. We can state this symbolically as
P[u(t), w(t)] = points on the curve, on the patch 
We can find an object-space tangent vector Pt

t to the curve at any point t on it by first 
computing ct

t, the tangent vector to the curve at u(t), w(t) in the u, w plane. 
Determine the direction cosines of this vector (that is, with respect of the u, w 
coordinate system), and denote them ku and kw. Now compute Pu

uw and Pw
uw at the u, 

w point determined by c(t) at t. We find that

It is the direction of Pt
t that interests us; the magnitude has no particular meaning.

uw
w

uw
w

w
uw

u

uw
u

ut
t

p

p
k

p

p
kp 
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surface-to-surface intersection

The problem of surface-to-surface intersection is defined by the 
equation

P(u, v) – P(t, w) = 0

where the P(u, v) = 0 and P(t, w) = 0 are the equations of the two 
surfaces.
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Compute the intersections as sets of u, w points, 
then apply curve fitting techniques to define these 
curves or a set of composite curves.

To obtain the boundary curve in object space, 
compute points on the u, w coordinate plane from 
ui(t) and wi(t). 

To obtain (x, y, z) points on the curve, substitute 
the values of u and w into the appropriate surface 
equation.

p = [x(u, w)  y(u, w)  z(u, w)]
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Surfaces with irregular boundaries
In general, the intersection curves do not coincide with the iso-parametric 
curves on the surface, are called irregular boundaries of a surface.

Segment the total surface  so that each region is itself mathematically tractable 
where as the total surface may not be mathematically tractable.  
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Reparametrization/ Subdivision
Reversal of direction of one or both of the parametric variables
Similar to curves 
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Reparametrization
Varying parameter range
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The relationship between the elements of B1 
and B2 are the same as obtained in curves.
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The corner points are related directly.

For the cross-derivatives, we obtain

If uj and ui are successive pairs of integers, then uj – ui =1; similarly for 
tj – ti, wt – wk, and vt – vk. 

ikik pq 
jkjk pq 

ilil pq 
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Subdivision of a surface

Given a patch whose geometric coefficients are denoted B1, 

find the matrix B2 of a new patch that is a sub-patch of the 
given patch and bounded by curves ui, uj, wk and wl.

The corner points of the new patch 

where the p vectors and q vectors are elements of B1 and B2

respectively.  

ikpq 00

jkpq 10

ilpq 01

jlpq 11
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Subdivision of a surface

The tangent vectors are

Remember that t1 – t0 = 1 and v1 – v0 = 1

We can obtain the cross-derivatives or twist vectors by 
evaluating puw

ik, puw
jk, puw

il and puw
jl.
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u
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