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Hyperpatch | |

A hyperpatch is a patch-bounded collection of points whose coordinates
_are given by continuous, three-parameter, single values mathematical
“[functions of the form

x=x(u, v, W),
y=y(u, v, w)

z=2(u, v, w)
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Algebraic and Geometric Form e

_ The algebraic form of a tricubic solid is given by the following polynomial

equation:
303

i k
Y auut

3
=0 j=0 k=0

p(u,v,w): u,v,we [0,1]

The ay, vectors are called the algebraic coefficients of the solid.

= 33,9 33,2 33,0
p(u,v,w)—amu VW' + Ay VW + Ayt
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Solid Modeling U
Hyperpatch Representation of Free-from Solids
# Hermite Hyperpatch
= Algebraic form
= Geometric form
= n-point form
@® Bezier Hyperpatch (| by m by n points)
@ B-spline Hyperpatch (I by m by n points)
#® NURBS Hyperpatch (I by m by n points & weights)
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Rectangular parametric solid

~x=(b-aju+a

Ty=(d-cv+c %
z=(f-e)w+e
where
u,v, wE[0,1]

(b.df)
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0 (b.d.c)
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We can take the same approach with the geometric form, with the result

p= Fi(u)Fj(V)Fk(W)bijk
The F terms are the familiar blending functions F,, F,, F; and F,, as
determined by the subscripted index.
At each of the eight corners, we find the following boudary conditions:

The corner point itself, three tangent vectors, three twist vectors and a
vector defined by the third-order mixed partial derivatives of the function.

1
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I | Continuity and composite solids
There are eight vectors defining boundary conditions at each of # To ensure C, continuity, we must
_ the eight corners, resulting in a total of 64 vectors. _ meet the condition on the
common surface:

At the corner defined by p(1, 0, 1) eight boundary condition

vectors are as: | |
P corner point Piw = 9ow
o
101 5 & o # For C, continuity, the tangent
v
Do ( tangent vectors  ——,——,—— vectors of the curves at these
I ou Ov ow - A
g Do points must be colinear; thus
. uv u - u
Pior PRSI Piw = kg,
Pioy ¢ twist vectors == ”
e oudv Oudw Ovow
Pioy
3
ww . . .
triple mixed partiall ———
101
oudvow
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Solid Modeling

Sweep Representation of Solids

Solid Models

Internal representation vs external representation

Internal representation is how computer stores the model. A polygon or a surface or a solid is swept along a path of given curve

Sweeping - translation, rotation, or arbitrary sweep to obtain a solid.

Pure Primitive Instancing - Parametric model

Constructive Solid Geometry (CSG) - solid primitives combined with
Boolean operators

Boundary Representation (B-Rep) - bounding face, edge, and vertices

T
@ Linear Sweep (Extruded Solid) and Circular Sweep (Solid of
‘ Revolution) are special cases of Generic Sweep.

*

This is a convenient method of construction and storage of solids.

e

Decomposition Methods
= Voxel Based Modeling : model of fixed size spatial cells
= Octree Based Modeling: model of variable spatial cells
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Example Primitive

Solid Modeling

Primitive Instancing

% Part is modeled as a combination of primitives.

@ Large number of primitives need to be stored in library to model variety
‘ of objects.

°

Every primitive can be completely and uniquely defined by a fixed
number of parameters. A
D1
Primitive D2
D4
ﬁ . D3

e D6 = DEPTH

Instances of Primitive
17-Qct-24 L6 2 K Jain (JITDM]) 13 17-Qct-24 L6 2K Jain (ITDM]) 14

Dr. Prashant K. Jain



PDPM IIITDM Jabalpur October 17, 2024

Solid Modeling e« Solid Modeling U

Constructive Solid Geometry (CSG) Constructive Solid Geometry

This is a solid modeling method that combines simple solid primitives to
build more complex models using Boolean operators: union, difference and

* y
.
intersection. /\
# The resulting model is a procedural model stored in the mathematical form
‘ of a binary tree where leaf nodes are solid primitives, correctly sized and D
!

positioned, and each branch node is a Boolean operator.
Many objects can be built using simple primitives such as cuboids, cylinder,
cone, sphere, torus etc.

#® Solids obtained by sweeping can be used together with primitives.
#® Convenient method for construction and storage of solid objects. - v é /Ea
U 03 =01002
o 04=PiTs /\
. @ v W - =
! 02 = Pal2
O1=PiT1

A CSG Tree
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Solid Modeling

Constructive Solid Geometry

e
1 7

A i = I
< w - R
§ = v - B, 3

T Some CSG Primitives

Block
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N Boolean Operations «
Boolean Operations ? JLK_ )
) s
Primitives . p“ o
7
, .
) a
.
AUSB ANB A-8 B-A

(a) Two dimensional

Primitives

Union: AUB Difference: A - 8 Intersection: AN B

1ua ANa A-8 B-A
1700604 (6) Three dimensional 17.-0ct-24 L6 2K Jain (ITDM]) 20)
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Algorithm for finding unions of two polygons d

begin by combining two polygons A and B as shown in Figure. It is required
_ to find union of two polygons A and B

‘1. Find intersections of edges of A and B as shown in figure

2. Segment edges of A and B. Thus if boundary of polygon A is
parameterized fromu = 0tou = 1 andBfromv = 0 tov = 1, then
the boundary of A in the example has four segments: u € [U1  Uz],
u € [uz uz],u € [Us Us),u € [Us U1].Balso hasfour
segments v € [V4a V3], v € [V3 V2], v € [V2 W], v €

[V1 4],
3. Select a point on the boundary of polygon A that is outside B, say P,.
Then that segment is also outside B. P i
:
1] 2,
17-Qct-24 L6 LK. Jaig (IITRM])

Algorithm for difference and intersection

_ Difference operation

" The algorithm is same as union operation, Pyo
except trace the boundary of polygon B
clockwise.
Subtraction operation
The algorithm is similar to union operation,
except segment tracing must start from a
point on a boundary of A that is inside of B.

Intersection: AN B

Union: AUB Difference: A - B

October 17, 2024

Algorithm for finding unions of two polygons 4

4. Starting at Py, trace the boundary of A to the next intersection point
with B, i.e. point 1.

Find the intersecting segment of B, and trace it along the direction of
increasing v to its intersection with A, point 4. At this point, we
discover that we have traced back to the starting segment on A, but
we have not yet exhausted the list of segments. We have found only
one loop.

Find a point on one of the remaining segments of A that is outside of
B say point P, . Then that segment too, is outside B.

7. Trace this boundary segment to the next
intersection point with B, i.e. point 3.

8. Repeat steps 5, tracing B to point 2. We have
completed another loop.

9. Because there are no more qualifying
segments to trace, union operation is
complete. Notice second loop is parameterized
in clockwise direction it is a hole.
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Regularized SET Operations

Dangling edges

K(PUQ)=PU*Q

-

Regularized SET Operations E_.T
: 0

ANB dangling

—_ cdge

X

An* B = |:| No dangling edge
or face

— Dangling face

i(PAQ) K(PNQ) = PN* Q
T'hcsc cdgzs
= do not emit
% I N
i(P-Q) Ki(P-Q) = P-"Q
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< Dangling
Boy edge
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.
| | ¢
Regularized SET Operations °
U
———
XUY=Xu'y
n
XAY=xn"y
Thzs boundary "// 1,
does not exist (X-Y)-X—‘Y
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Regularized SET Operations

s

] e d
C=AnEB | ﬁ‘
C = (bAUIA) N (bB UiB) -

C = (bANbB) U (iA N bB) U (bA N iB) U (iA N iB)
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Result of applying Regularized SET Operations

Common face

i

An*B 2 (null object)
A-*B @
17:0ct-24 L6 2K Jain QUTDM) 34
. _ _ 4
Result of applying Regularized SET Operations &
— L Common edge
i
‘.EQ‘ Av*B
ﬁ..hr
7
An*B & (null obiect)
- |65
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Regularized SET Operations

12.0ct-24
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Result of applying Regularized SET Operations

963

e

Result of applying Regularized SET Operations

* B
o R
An*B @ (null object)
B
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———Tangent face
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Solid Modeling Ej Topology and geometry
Boundary Representation (B-Rep) N .
' B
# In this representation solid objects are represented as unions of their =
boundaries or enclosing surfaces. The enclosing surfaces can include planar 5 = o R, 2
polygons, quadrics and free-form surface patches. A Py !
? In this scheme topological and geometric information are explicitly defined. =
# Topological information provides the relationships among vertices, . Ls
‘ edges/curves and faces/patches. In addition to connectivity, topological Same geometry but different topology
information also includes orientation of edges and faces etc.
# Geometric information usually consists of equations of the edges/curves
and faces/patches. 3 Ly
R
G P,
=
. | oL Same topology but different geometry
Objects with same topology but with different geometry
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Wireframe Model Ambiguity of Wireframe Model

Modeling with all edges of an object.

7

Which one?
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" .
l I Boundary Representations
Boundary Model N u
Validity of A B-REP Model
~ Geometry and Topology )
Euler's formula
object V-E+F=2
V: Vertices, E: Edges, F: Faces
Conditions
* No hole is present
iad F1I F3 F3 F4 F5 F6 F7 ¥8 F9 Fl0 F11 F12 F13 Fl4 * The solid is connected
* Each edge is adjacent to exactly two faces and terminated by two vertices
f
ea;\fsl\'on e Each vertex is the intersection of at least three faces
Loop u 3 4 1L
Edge &54 5E6E7E3\E10 I |
V=8 V=5
Vertices V1V2V3Va VSV6V7VB VIO ﬁ:ﬁ’z E;g
L0c2s L0 B K Jain QITRIM) 42 12004 L4 B K Jain JITDMI) ST |
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Boundary Representations ¢ Example: Euler’s formula «
« Euler’s formula can be generalized to a polyhedron with holes and V-E+F-L=2 (B - G)
multiple components Consider sample parts:
V-E+F-L=2(B-G)
Where: through hole ﬁ
L: Number of inner loops (connected edges), E=12,
B: Number of exterior shells (connected surfaces), V=38,
G: Number of passage ways (through hole) F=6
V-E+F-L=2(B-G) E=24
16-24+10-2=2(1-1) S~ V = 16,
F = 10 (6 plus additional 4)
V-E+F-L=2(B-G) L = 2 (as its through hole)
Rt 7 24-36+15-3=2(1-1) il
G=1
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Example: Part with blind hole L4 Example: Part with Projection L4
V-E+F-L=2(B-G) V-E+F-L=2(B-G)
Mt Ii For 1 projections on a part,
E=24 ln E =24,
F=6+5=11 V =16,
V=16,L=1 F=11(6 + 4 +1)
B=1 G=0
G=0 L = 1 (at base of projection)
If this part contained a blind hole, then? — Se—
Eiod I- I- For 2 projections on a part,
i, ] E=36,
F =10 (6 plus additional 4) Vf24'
L =2 (as its through hole) F=16, 1
51 L=2 (at base of projection)
G=0
G=1
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4 . Projecti 4
Example: Projection and Blind Hole J Example: Projection and Through Hole J
V-E+F-1=2(B-G) V-E+F-L=2(B-G)
]
~—
E=12+24 (from prev. slide) = 36
V=8+16 = 24
F=5+11 =16 !
L=1+1 (at base of projection and top of hole) \E/ i ;izgom prev. slide) = 36
F=4+11 =15
L = 1+2 (at base of projection, top and bottom of hole)
B=1
G=1
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. L . . L .
Solid Modeling 4 Solid Modeling L4
Boundary Representation (B-Rep)
Decomposition Methods
$ o
} @ In decomposition methods, a solid is decomposed into a collection of
# This representation is a convenient for evaluation of many intrinsic and ‘ adjoining, non-intersecting solid primitives.
‘ relational properties of solids. @ Two of the important methods under this category are:
@ Conversion from of Constructive Solid Geometry (CSG) to Boundary = Voxel Based Modeling
Representation (Brep) is called boundary evaluation. = Octies Based Mudeling
o \
\
{ |
|
|
| ‘
Tm J;l_ (b) Spatial occupancy enumeration (¢} Octree encoding
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oL . e g
Decomposition Methods 7 Quadtree decomposition 7
0 1
Level : 0 Level : 1
1 1 /
3 2
(ay (b)
11 s
10
3 3 o \ 4 I .u:\
2 13| 12 13| 12
3 3 Level : 2 Level : 3
1
3 2 3 2
2 2
(9] ()
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Quadtree decomposition Quadtree decomposition with equilateral triangles
~
LT TTTT1
/ . i
= NN
i =
(a) (b) (a) (b)
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s Decomposition Methods

Decomposition Methods
Voxel Based Modeling

Octree Based Modeling

 Pros:

— Easy to verify if a point (a voxel) is B

S inside or outside an object 3

— Boolean operations are easy to apply ! . y :‘ 1

* Cons: ; N\gal;r’/ 1 3

Refinement Level Octree = Memory costs are hlgh ~J ! “: e

2 — Resolution is limited to size and shape [W
of voxel

=
w

Multiple Rools

\

|

|
|+l

L6 2 K_Jain (ITTDM])
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